بررسی تأثیر الیاف نی در ویژگی‌های مهندسی بتن ساخته شده از رسوبات رودخانه حرمک (شمال زاهدان) و استفاده از آن در مقاوم‌سازی سازه‌ها در برابر زلزله

نوع مقاله : مقاله های برگرفته از رساله و پایان نامه

نویسندگان

1 دانشجوی دکتری، گروه زمین شناسی، واحد زاهدان، دانشگاه آزاد اسلامی، زاهدان، ایران

2 استادیار، گروه زمین شناسی، واحد زاهدان، دانشگاه آزاد اسلامی، زاهدان، ایران

3 دانشیار، گروه زمین شناسی، واحد زاهدان، دانشگاه آزاد اسلامی، زاهدان، ایران

4 استادیار، گروه مهندسی عمران، واحد زاهدان، دانشگاه آزاد اسلامی، زاهدان، ایران

10.22034/jgeoq.2024.298852.3235

چکیده

هدف پژوهش حاضر بررسی تأثیر الیاف نی در ویژگی‌های مهندسی بتن ساخته شده از رسوبات رودخانه حرمک (شمال زاهدان) و استفاده از آن در مقاوم‌سازی سازه‌ها در برابر زلزله می‌باشد. در این پژوهش جهت بررسی تأثیر الیاف نی در ویژگی‌های مهندسی بتن نسبت آب به سیمان در همه طرح‌ها ثابت و برابر 195 به 410 است و آزمایشات بر روی 5 نمونه حاوی الیاف و بدون الیاف انجام شده است که پیش از تعیین میزان بهینه هر کدام از الیاف مذکور جهت تقویت بتن، نتیجه آزمایش‌های لازم بر روی بتن تازه و سخت شده مورد بررسی قرار گرفت. در این تحقیق علاوه بر طرح اختلاط الیاف نی با بتن از روش‌های آزمایشگاهی همچون مقاومت فشاری و کششی نیز برای تایید صحت نتایج و اهمیت انتخاب مصالح مناسب با صرف هزینه‌های اندک در مدت زمان کوتاه قبل از اجرای طرح اختلاط بتن بهره گرفته شد. نتایج نشان می‌دهد افزودن الیاف نی به بتن سبب افزایش مقاومت فشاری در نمونه‌های بتنی شده است. با مقایسه نتایج این آزمایش در بتن معمولی و بتن‌های تقویت شده با الیاف، نشان داد که این افزایش مقاومت در سنین 7 تا 28 روز تنها در نمونه‌های S2 و S3 افزایش نشان داده و مشابه نمونه بتن معمولی S1 است، در حالیکه در نمونه‌های S4 و S5 که نمونه‌های الیاف سه ردیفه بودند کاهش زیادی در مقاومت فشاری دیده می‌شود. افزودن الیاف نی در ابتدا سبب افزایش مقاومت‌های فشاری و کششی می‌شود ولی پس از گذشت مدت زمان باعث کاهش این مقاومت‌ها می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

Investigating the effect of reed fibers on concrete engineering characteristics made of sediments of Hormak River (North of Zahedan) and its use in Reinforcement of structures against earthquakes

نویسندگان [English]

  • Fershteh Koosha 1
  • Kazem Shabani Gorji 2
  • Jafar Rahnama Rad 3
  • Amir Hamzeh Kikha 4
1 PhD Student, Department of Geology, Zahedan Branch, Islamic Azad University, Zahedan, Iran
2 Assistant Professor, Department of Geology, Zahedan Branch, Islamic Azad University, Zahedan, Iran
3 Associate Professor, Department of Geology, Zahedan Branch, Islamic Azad University, Zahedan, Iran
4 Assistant Professor, Department of Civil Engineering, Zahedan Branch, Islamic Azad University, Zahedan, Iran
چکیده [English]

The purpose of this study is to investigating the effect of reed fibers on concrete engineering characteristics made of sediments of Hormak River(North of Zahedan)and its use in Reinforcement of structures against earthquakes.In this study, in order to investigate the effect of reed fibers on the engineering properties of concrete, the ratio of water to cement in all designs is constant and equal to 195 to 410 and experiments have been performed on 5 samples containing fibers and without fibers, before determining the optimal amount of each From the mentioned fibers to strengthen the concrete, the results of the necessary tests on fresh and hardened concrete were examined. In this study, in addition to mixing straw fibers with concrete,laboratory methods such as Compressive and tensile strength were used to confirm the accuracy of the results and the importance of selecting suitable materials at low cost in a short time before the concrete mixing project. The results show that the addition of straw fibers to concrete has increased the compressive strength in concrete samplesComparing the results of this test in ordinary concrete and fiber reinforced concrete, showed that this increase in strength at the ages of 7 to 28 days has increased only in samples S2 and S3 and is Similar to the typical concrete example isS1, While in S4 and S5 samples, which were samples of three-row fibers,there is a large decrease in compressive strength.Adding straw fibers initially increases the compressive and tensile strengths, but over time reduces these resistances.

کلیدواژه‌ها [English]

  • Reed fibers
  • Concrete
  • Earthquake
  • Compressive and tensile strength
  • Hormak river sediments
امیدعلیزاده میثم، شایان فر جواد، نعمت­زاده مهدی، (1397)، ارزیابی عملکرد لرزه‌ای قاب‌های بتن مسلح مقاوم‌سازی شده با استفاده از سیستم ژاکت بتنی، نشریه مهندسی عمران مدرس، ۱۸ (۳)، صص 25-۳۵.
حبیب­پور، مصطفی، فرحبد، فرهنگ، (1394). مقاوم‌سازی ستون‌های بتن مسلح با استفاده از کامپوزیت‌هایFRP چند جهته، تحقیقات بتن،8 (2)، صص 113-124.
سازمان زمین شناسی و اکتشافات معدنی ایران، (1400).
ضیایی، مهرداد، ساجدی، سیدفتح اله، (1397)، امکان سنجی ساخت بتن سبک با استفاده از الیاف باگاس نیشکر خوزستان، پانزدهمین همایش پژوهش های نوین در علوم و فناوری، تهران.
مظلوم، موسی، مهروند، مرتضی، سواری پور، عظیم، (1398)، مقاوم‌سازی تیرهای بتنی توسط الیاف پلیمری شیشه‌ای، نشریه مهندسی سازه و ساخت، شماره ویژه (4)، صص 27-42.
Andrew, J. J., Srinivasan, S. M., Arockiarajan, A., & Dhakal, H. N. (2019). Parameters influencing the impact response of fiber-reinforced polymer matrix composite materials: A critical review. Composite Structures, 224, 111007.‏
Elbehiry, A. Elnawawy, O.Kassem, M. Zaher, A. Uddin, N. and  Mostafa, M. (2020), Performance of concrete beams reinforced using banana fiber bars, Case Studies in Construction Materials, V13.
Euro light concrete (1998) Definitions and international consensus Report, European Union BE 96-3942/R1
Farooqi, MU, Ali, M., (2018), Contribution of plant fibers in improving the behavior and capacity of reinforced concrete for structural applications. Construction and Building Materials. V182, PP 94-107
Gholampour, A., Fallah Pour, A., Hassanli, R., & Ozbakkaloglu, T. (2019). Behavior of actively confined rubberized concrete under cyclic axial compression. Journal of Structural Engineering, 145(11), 04019131.‏
Krahl, P. A., Pereira, M. F., Dalfré, G. M., & Siqueira, G. H. (2020). A novel approach to characterize the direct shear pullout behavior of single hooked steel fibers. Cement and Concrete Composites, 103685.‏
Liu, X., Wu, T., Yang, X., & Wei, H. (2019). Properties of self-compacting lightweight concrete reinforced with steel and polypropylene fibers. Construction and Building Materials, 226, PP 388-398.‏
Moody, L. C., Powell, I. J., Lewis, D. O., Johnson, M. C., Butler, B. G., & Paramore, J. D. (2020). Cross-sectional area measurement by optical and electrical resistance methods for subscale mechanical testing of near-net-shape titanium components. International Journal of Refractory Metals and Hard Materials, 105265.‏
Neville, A. M. (1995). Properties of concrete (Vol. 4). London: Longman.‏
Páez-Flor, N. M., Rubio-Hernández, F. J., & Velázquez-Navarro, J. F. (2019). Microstructure-at-rest evolution and steady viscous flow behavior of fresh natural pozzolanic cement pastes. Construction and Building Materials, 194, PP 360-371.‏
Peyre, K., Tourlonias, M., Bueno, M. A., Spano, F., & Rossi, R. M. (2019). Tactile perception of textile surfaces from an artificial finger instrumented by a polymeric optical fibre. Tribology International, 130, PP 155-169.‏
Pham, P. N., Zhuge, Y., Turatsinze, A., Toumi, A., & Siddique, R. (2019). Application of rubberized cement-based composites in pavements: Suitability and considerations. Construction and Building Materials, 223, PP 1182-1195.‏
Prasad, P. K., & Mishra, R. S. (2019). Study in Stress Behaviour of Fibre (Steel & Glass) Reinforced Concrete, nternational Research Journal of Engineering and Technology (IRJET), 6 (6),  PP 520-527.
Qian, C.X., Stroeven P. (2000) .Development of hybrid polypropylene and steel fiber reinforced concrete. Cem. Concr. Res. 30, PP 63–69.
Rahimi-Aghdam, S., Masoero, E., Rasoolinejad, M., & Bažant, Z. P. (2019). Century-long expansion of hydrating cement counteracting concrete shrinkage due to humidity drop from self-desiccation or external drying. Materials and Structures, 52(1), 11.‏
Shon, C. S., Mukashev, T., Lee, D., Zhang, D., & Kim, J. R. (2019). Can common reed fiber become an effective construction material? Physical, mechanical, and thermal properties of mortar mixture containing common reed fiber. Sustainability, 11(3), 903.‏
Singh, D. K., Vaidya, A., Thomas, V., Theodore, M., Kore, S., & Vaidya, U. (2020). Finite Element Modeling of the Fiber-Matrix Interface in Polymer Composites. Journal of Composites Science, 4(2), 1-13.‏
Sosa, I., Thomas, C., Polanco, J. A., Setién, J., & Tamayo, P. (2020). High Performance Self-Compacting Concrete with Electric Arc Furnace Slag Aggregate and Cupola Slag Powder. Applied Sciences, 10(3),  PP 1-17
Tao, J., Wei, X., & Luo, Y. (2019). Comparison of non-contact autogenous shrinkage measurements and the stress ratio of capillary stress to compressive strength. Construction and Building Materials, 206, PP 226-235.‏
Wang, D., Ju, Y., Shen, H., & Xu, L. (2019). Mechanical properties of high performance concrete reinforced with basalt fiber and polypropylene fiber. Construction and Building Materials, 197, PP 464-473.‏
Zhang, D., Mao, M., Zhang, S., & Yang, Q. (2019). Influence of stress damage and high temperature on the freeze–thaw resistance of concrete with fly ash as fine aggregate. Construction and Building Materials, 229, 116845.‏
Zou1, X, Wang, Q, Wu, J, (2017), Reliability-based performance design optimization for seismic retrofit of reinforced concrete buildings with fiber-reinforced polymer composites, Advances in Structural Engineering, PP 1-14.