بررسی روند و رفتار بارشی شهر شاهرود با استفاده از مدل‌های آماری و تحلیل طیفی

نوع مقاله: مقاله علمی -پژوهشی

نویسندگان

1 دانشیار اقلیم‌شناسی، دانشگاه زنجان، زنجان، ایران

2 دانشجوی دکتری اقلیم‌شناسی گرایش تغییرات آب و هوا، دانشگاه زنجان، زنجان، ایران

چکیده

سری‌های زمانی که در مطالعات اقلیمی مورد بررسی قرار می‌گیرند، دارای ویژگی و رفتارهای متفاوتی از جمله روند، نوسان، افت و خیز و جهش هستند. هر سری زمانی ممکن است حاوی یک سری ویژگی‌ها و رفتارهای پنهانی باشند که با روش‌ها و مدل‌سازی‌های ساده آماری قابل استخراج نباشند. در این راستا تکنیک تحلیل طیفی یک ابزار توانمند در شناسایی و آشکارسازی افت و خیزهای نهان و آشکار در سری زمانی است. این تکنیک با تبدیل رفتار سری زمانی از حالت نوسانات زمانی (بعد زمانی) به بعد فرکانسی، چرخه‌ها یا افت و خیزهای موجود در سری را که با توابع ساده آماری مانند خودهمبستگی و میانگین متحرک و غیره نمود ندارند، را آشکار می‌سازد. در این مقاله جهت شناسایی رفتار بارش شهر شاهرود از میانگین بارش سالانه 60 ساله(2012- 1953)، بر اساس روش‌های توزیع آماری، شناسایی روند، مدل‌سازی روند و در نهایت شناسایی چرخه‌ها با استفاده از روش تحلیل همساز(هارمونیک) و تحلیل طیفی و با کمک از نرم افزارهای Matlab، Minitab و SPSS استفاده شده است. برای شناسایی دقیق‌تر رفتار مذکور میانگین بارش سالانه را به دو دوره 30 ساله تقسیم نموده و بعد از محاسبات هر دوره، دوره‌ها با هم مقایسه شدند. لذا بعد از شناسایی اولیه رفتار بارش، سری زمانی بارش از قلمرو زمانی به قلمرو فرکانسی تبدیل شد. سپس واریانس هر فرکانس(هرجفت سینوس و کسینوس یک فرکانس یا همساز می‌باشد)، و سهم واریانس هر چرخه از تغییرات واریانس کل بدست آمد. در مرحله بعدی دوره نگار و دوره‌های بازگشت برای هر یک از چرخه‌ها محاسبه و تغییرات تصادفی متغییرها(نوفه یا نویز) برای هر یک از دوره‌های منتخب استخراج گردید. نتایج نشان داد توزیع بارش شاهرود نرمال نیست و بهترین توزیع قابل برازش بر بارش شاهرود توزیع ویبول است. خروجی جهت و مقدار روند با استفاده از روش‌های ناپارامتری و پارامتری متفاوت می‌باشد به نحوی که بر اساس روش‌های ناپارامتری غیر خطی کندال و خطی اسپیرمن روند مثبت و مقدار آن به ترتیب 176/0 و 140/0 میلیمتر در سال ولی در روش پارامتری خطی، روند منفی با ضریب سالانه 0352/0- میلیمتر می‌باشد. همچنین نتیجه مدل‌سازی روند با استفاده از روش ناپارامتری مبین کاهش حجم سالانه بارندگی به مقدار 685/0- میلمتر است. این مقدار در روش مدل‌سازی خطی و نمایی مثبت می‌باشد. نتایج تحلیل طیفی وجود دو چرخه با ضریب اطمینان 95% در فرکانس‌های 03/0 و 17/0 با دوره بازگشت تقریبی 15 و 3 ساله برای میانگین بارش سالانه 60 ساله(2012- 1953)، یک چرخه با ضریب 95% در فرکانس 05/0 با دوره بازگشت 5/7 ساله برای میانگین بارش 30 سال اول دوره آماری(1982- 1953) و یک چرخه با ضریب 99% در فرکانس 47/0 با دوره بازگشت یک ساله برای میانگین بارش 30 سال دوم دوره آماری (2012- 1983) می‌باشد. همچنین خودهمبستگی‌های منفی در هر سه دوره بیانگر وجود نوفه آبی می‌باشد بدین معنی خط صفر پیوسته از چرخه اول تا آخرین چرخه به صورت پیوسته سیر صعودی را طی می‌کند.
 

کلیدواژه‌ها


عنوان مقاله [English]

Evaluating the trend and behavior rain the Shahrood city using the model statistically and spectral analysis

نویسندگان [English]

  • Hossein Asakareh 1
  • Rahim Yousefizadeh 2
1 Associate Prof. of Ecology, University of Zanjan, Zanjan, Iran
2 Ph.D. student in Orientation Climate Change Ecology, University of Zanjan, Zanjan, Iran
چکیده [English]

Abstract
    Time series in climate studies are reviewed, including the differently has features and behavior of the Trends, oscillation, Rise and fall and mutation. Each time series may contain a number of hidden features and behaviors that are not derived from simple statistical methods and modeling. In this context, the spectral analysis technique a useful tool in the detection of latent and apparent fluctuations in a time series. This technique is to transform the time series behavior of the fluctuations of time (of time) to the next frequency Cycles or fluctuations in series with simple statistical functions such as autocorrelation and moving average, and so can not reveal. In this paper to detect the precipitation behavior the Shahrood city is used the average annual precipitation is 60 years old (2012- 1953), based on the statistical distribution, Identifying trends, the modeling trend and finally identify the cycles using Harmonic Analysis and spectrum analysis And with the aid of software Matlab, Minitab and SPSS. To Identifying more precisely the behavior of the average annual rainfall is divided into two periods of 30 years and after the calculation of each period was compared. So after the initial identification of precipitation, rainfall time series from the time domain to the frequency domain became. The variance of each frequency (or harmonic frequency is Hrjft sine and cosine), and the proportion of variance in each cycle of the total variance, respectively. In the next step the journalist and the return period for each cycle was calculated and random variations variables (noise) were extracted for each of the courses selected. The results show that the rainfall distribution is not normal Shahrood and the Weibull distribution is the best distribution to fit the rain Shahrood. Output direction the value trends non-parametric and parametric methods vary So that the nonlinear nonparametric Spearman Kendall and linear positive trend and its value in mm, respectively 0.176 and 0.140 But the the method of parametric linear negative trend with an annual rate of -0.0352-mm. Also result of the modeling trends by using non-parametric method represents a decrease in annual precipitation amounts to -0.685 to be mm. The value of linear and exponential modeling approach is positive. Spectral analysis of two cycles at a frequency of 95% confidence level at frequencies 0.03 and 0.17 return period of approximately 15 and 3 years old to 60-year mean annual precipitation (2012- 1953), A cycle is of 95% in frequency by a factor of 0.05 year return period 7.5  rainfall for the average 30 year period (1982, 1953) and a cycle rate of 99% a year return period for the average at the frequency 0.47 Due to the 30-year period (2012- 1983). Also negative autocorrelation noise indicating is blue in all three periods, That means zero line joining the first cycle to the last cycle of continuous upward through it.
 

کلیدواژه‌ها [English]

  • Keywords: Statistically models
  • Trends
  • Spectral analysis
  • Frequency
  • Cycle
  • Precipitation Shahrood