ارزیابی و برآورد میزان تبخیر و تعرق گیاه برنج در استان های شمالی کشور

نوع مقاله: مقاله علمی -پژوهشی

نویسندگان

1 دکتری مهندسی کشاورزی- زراعت. دانشکده کشاورزی، واحد آیت الله آملی، دانشگاه آزاد اسلامی، آمل، ایران

2 دانشکده کشاورزی، واحد آیت الله آملی، دانشگاه آزاد اسلامی، آمل، ایران

3 دانشکده کشاورزی، واحد لاهیجان، دانشگاه آزاد اسلامی، لاهیجان، ایران

4 دکتری اقلیم شناسی، دانشگاه تهران، تهران، ایران

چکیده

برنج (Oryza sativa L) یکی از محصولات زراعی است که در اقلیم‌های گرم و مرطوب با بارش نسبتا زیاد و یا مناطق غنی از آب‌های سطحی و زیر زمینی قابلیت کشت دارد. مناسب‌ترین منطقه برای کشت این محصول استان‌های شمالی کشور می‌باشد. بدین منظور در این پژوهش تلاش شده است که میزان تبخیر و تعرق گیاه برنج در مراحل مختلف رشد (می تا آگوست) در سه استان گیلان، مازندران و گلستان بدست آید. در ابتدا میزان تبخیر و تعرق گیاه مرجع در ایستگاه‌های منتخب با استفاده از روش فائو پنمن ـ مانتیث به عنوان بهترین روش استاندارد محاسبه تبخیر و تعرق، محاسبه و سپس با حاصلضرب ضریب گیاهی گیاه برنج در مقادیر تبخیر و تعرق گیاه مرجع، مقدار تبخیر و تعرق گیاه برنج در مراحل مختلف رشد بدست آمد. نتایج نشان می‌دهد‌ که بیشینه میزان تبخیر و تعرق گیاه برنج در مرحله میانی و کمینه آن در مرحله پایانی رشد تجربه می‌شود (به استثنای ایستگاه منجیل)، در بیشتر ایستگاه‌های منتخب، تبخیر و تعرق گیاه برنج در مرحله میانی رشد (ژوئن و جولای) در حدود 65 تا 70 درصد از کل تبخیر و تعرق این محصول را به خود اختصاص می‌دهد. به طور کلی میزان تبخیر و تعرق برنج در تمام مراحل رشد از شرق منطقه (ایستگاه مراوه تپه) به سمت غرب (ایستگاه آستارا) به استثنای ایستگاه منجیل کاهش می‌یابد، در مقابل میزان بارش در دوره رشد این محصول از شرق به غرب، روندی افزایشی را طی می‌کند به طوری که در ایستگاه‌های مراوه تپه و گرگان میزان بارش به ترتیب در حدود 9 و 20 درصد از نیاز آبی این محصول را تامین کند در حالی که در بیشتر ایستگاه‌های استان مازندران و گیلان در حدود 30 تا 50 درصد نیاز آبی این محصول از طریق بارش قابل تامین است.

کلیدواژه‌ها


عنوان مقاله [English]

Assessment and Estimation of Evapotranspiration of Rice Plant in Northern Provinces of Iran

نویسندگان [English]

  • Elham Modiri 1
  • Davod Barari Tari 2
  • Ebrahim Amiri 3
  • Yosef Niknejad 2
  • Hormoz Fallah 2
  • Mehdi Khazaei 4
1 Ph.D in Agricultural Engineering- Agronomy. Department of Agro technology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran.
2 Department of Agro technology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
3 Department of Agriculture, Lahijan Branch, Islamic Azad University, Lahijan, Iran
4 Ph.D in Climatology, University of Tehran, Tehran, Iran
چکیده [English]

Oryza sativa is one of the crops which can be cultivated in warm and humid climates with relatively high rainfall or large areas of terrestrial water and underground water. One of the most suitable region for rice growing is the northern provinces of Iran. In this study, the rate of evapotranspiration of Oryza sativa in different stages of growth (May to August) has been obtained in three provinces of Iran (Gilan, Mazandaran and Golestan). First, the evapotranspiration of the reference plant in selected stations was calculated using the FAO Penman-Monteith method, and then by the product of the rice plant's coefficient in the reference values of evapotranspiration, the amount of evapotranspiration of Oryza sativa was obtained at different stages of growth. The results indicate that the maximum evapotranspiration of the Oryza sativa in the middle stage and the minimum of this index occurred in the final stage of grows (except Manjil station). Also, the evapotranspiration in the middle stage of grows (June and July) is around 65 – 70 % of the total evapotranspiration in the most stations. The rate of evapotranspiration of rice in all stages of growth decreases from the east (Marave tappeh station) to the west (Astara station) of the region (except Manjil station). In contrast, the rate of precipitation during the period of growth of this product from east to west is increasing. For instance, the precipitation at Marave Tappeh and Gorgan are supplied respectively 9 and 20% of the water demand of this product while in the stations of Mazandaran and Gilan provinces, about 30-50% of the water demand of this product is provided by rainfall.

کلیدواژه‌ها [English]

  • Keywords: Evapotranspiration
  • Penman-Monteith
  • Rice
  • Northern Provinces

اخوت، م.، وکیلی، د. 1376. برنج (کاشت، داشت، برداشت). انتشارات فارابی. ۲۱۲ صفحه.

درزی نفت چالی، ع. ا. و کار اندیش، ف. 1395. مدیریت کشت برنج در استان مازندران در شرایط تغییر اقلیم. نشریه پژوهش آب در کشاورزی. جلد 3 شماره 3. صفحه 33-346. doi: 10.22092/JWRA.2016.107154

شیدائیان، م.، ضیاء تبار احمدی، م. خ. و فضل اولی، ر. ۱۳۹۳. تاثیر تغییر اقلیم بر نیاز خالص آبیاری و عملکرد محصول برنج (مطالعه موردی: دشت تجن). نشریه آب و خاک (علوم و صنایع کشاورزی). جلد ۲۸. شماره ۶. صفحه ۱۲۹۷- ۱۲۸۴.

محمد بیگی، ع. 1396. برنج. جهاد کشاورزی شهرستان اصفهان. قابل دسترسی در http://www.agri-esfahan.ir/Default.aspx?tabID=1742

- هادیان، س. ح. و قربان نژاد، ا. ۱۳۸۹. مدیریت مصرف بهینه آب در شالیزار. ناشر مدیریت ترویج کشاورزی مازندران. ۲۳ صفحه.

Allen, R. G., Pereira, L. S., Raes, D. and Smith, M. 1998. Crop Evapotranspiration (Guidelines for Computing Crop Water Requirements), FAO Irrigation and Drainage. Paper No.56. Rome, Italy.

Amiri Larijani, B., Sarvestani, Z. T., Nematzadeh, G. H., Manschadr, A. M. and Amiri, E. 2011. Simulation phenology, growth and yield of transplanted rice at different seedling ages in northern Iran using ORYZA2000. Rice Science 18(4):321-34. Doi: 10.1016/S1672-6308 (12) 60011-0. Applications. Agric. Forest Meteorol. 161, 26-45.

Araya, A., Keesstra, S. D., Stroosnijder, L. 2010. A new agro climatic classification for crop suitability zones: a methodological approach for potatoes in Argentina, Agric. Syst. 73, 297- 311.

Bakhtiari, B., Ghahreman, N., Liaghat, A. M. and Hoogenboom. G. 2011. Evaluation of Reference Evapotranspiration Models for a Semiarid Environment Using Lysimeter Measurements, J. Agr. Sci. Tech. (2011) Vol. 13: 223-237.

Caldiz, D. O., Haverkort, A. J., Struik, P. C., 2002. Analysis of a complex crop production system in interdependent agro-ecological zones: a methodological approach for potatoes in Argentina. Agric. Syst. 73, 297–311.

Cavada, E. P., Drago, S. R. and González, R. J. 2014. Wheat and Rice in Disease Prevention and Health, Chapter 33 - Evaluation of Physical and Nutritional Properties of Extruded Products Based on Brown Rice and Wild Legume Mixtures, Pages 431-441.

De Silva, C. S., Weather head, E. K., Knox, J. W. and Rodriguez-Diaz, J. A.  2007. Predicting the impacts of climate change: a case study on paddy irrigation water requirements in Sri Lanka. Agricultural Water Management, 93(1-2): 19-29.

Doorenbos, J. and Pruitt, W. O. 1977. Guidelines for Predicting Crop Water Requirements. FAO Irrigation and Drainage Paper 24. Rome: Food and Agriculture Organization of the United Nations.

FAO Food and Agriculture Organization; 2016 [http://faostat3.fao.org/browse/Q/*/E].

Fei, W. and Shao- bing, P. 2017. Yield potential and nitrogen use efficiency of Chinas super rice, Review. Journal of Integrative Agriculture. 16(5): 1000- 1008.

Feng, G., Cobb, S., Abdo, Z., Fisher, D., Ouyang, Y., Adeli, A. and Jenkins, N. J. 2016. Trend Analysis and Forecast of Precipitation, Reference Evapotranspiration, and Rainfall Deficit in the Backland Prairie of Eastern Mississippi, journal of applied meteorology and climatology, 55, P 1425-1439. https://doi.org/10.1175/JAMC-D-15-0265.1

Fischer, G., Shah, M., Tubiello, F. N. and Van Velhuizen, H. 2005. Socio economic and climate change impacts on agriculture: an integrated assessment, 1990-2080.

Garcia, M., D. Raes, R. Allen, and C. Herbas, .2004. Dynamics of reference evapotranspiration in the Bolivian highlands (Altiplano). Agric. For. Meteor., 125, 67–82.

Geerts, S., Raes, D., Garcia, M., Del Castillo, C. and Buytaert, W. 2006. Agro-climatic suitability mapping for crop production in the Bolivian Altiplano: a case study for quinoa. Agric. Forest Meteorol. 139, 399–412.

Hargreaves,G. H. 1994. Defining and using reference evapotranspiration, J .Irrig and Drain.Eng.ASCE, 120(6).

Hira, G. S. and Khera, K. l. 2000. Water resource management in Punjab under rice – wheat production system. Research Bulletin. No. 2/2000. pp 57. 

IRRI statistic, 2016.

Kim, J. and Hogue, T. S. 2008. Evaluation of a MODIS-Based Potential Evapotranspiration Product at the Point Scale. Journal of hydrometeorology. Vol.9, p.444-460.

Kudo, Y., Noborio, K., Shimoozono, N. and Kurihara, R. 2014. The effective water management practice for mitigating greenhouse gas emissions and maintaining rice yield in central Japan. Agric. Ecosyst. Environ. 186, 77–85. Doi:10.1016/j.agee.2014.01.015

Kulkarni, A. K., Masuti, R. and Limaye, V. S. 2015. Comparative study of evaluation of evapotranspiration methods and calculation of crop water requirements at chaskaman command area in pune region, india. International Journal of Research in Engineering and Technology,V.4,323-326.

Liu, Y., L. S. Pereira, J. L. Teixeira, and L. G. Cai. 1997. Update definition and computation of reference evapotranspiration (in Chinese). J. Hydrol. Eng., 6, 27–33.

McVicar, T .R., Van Niel, T. G., Li, L. T., Hutchinson, M. F., Mu., X. M. and Liu, Z. H. 2007. Spatially distributing monthly reference evapotranspiration and pan evaporation considering topographic influences. Journal of Hydrology, 338, 196–220.

McVicar, T .R., Van Niel, T. G., Li, L. T., Hutchinson, M. F., Mu., X. M. and Liu, Z. H. 2005. Spatially Distributing 21 Years of Monthly Hydro meteorological Data in China: Spatio-Temporal Analysis of  FAO-56 Crop Reference Evapotranspiration and Pan Evaporation in the Context of Climate Change CSIRO Land and Water Tech. Rep. 8/05, Canberra, Australia, 316 pp.

Ramirez- villegas. J. and Chalinor. A. 2012. Assessing relevant climate data for agricultural application. Journal of Agricultural and Forest Meteorology. Vol: 161: 26-45. https://doi.org/10.1016/j.agrformet.2012.03.015.

Roy, P., Orikasa, T., Okadome, H., Nakamura, N. and Shiina, T. 2011. Processing conditions, rice properties, health and environment. Int J Environ Res Public Health Jun; 8(6):1957-76. Doi: 10.3390/ijerph8061957.

Sedaghat, N., Pirdashti, H., Asadi, R. and Mousavi Taghani, Y. 2015. Effect of different Irrigation methods on rice water productivity. Journal of water research in agriculture. 28(1):1-9.

Seemann, J. Chircov, Y. I., Lomas, J. and Primault ,B. 1979. Agro meteorology, New York, springer.

Seppelt, R. 2000. Regionalized optimum control problems for agro ecosystem management Ecol. Model. 131, 121- 132.

Sim, k., Sou, S., Sam, C. and Neang, M. 2012.The Impact of climate change on rice production in Colombia. The NGO Forum on Cambodia, Environment Programme’s Agricultural Policies Monitoring Project. Pp 100. Doi: 10.13140/2.1.3464.5122 

Pasquale, S. Hsiao, T.C., Fereres, E. and Raes, D. 2012. Crop yield response to water. Vol. 1028. Rome: fao.

Sumner, D .M., and Jacobs, J. M. 2005. Utility of Penman-Monteith, Priestley-Taylor, reference evapotranspiration, and pan evaporation methods to estimate pasture evapotranspiration. J. Hydrol., 308, 81–104.

Temesgen, B., Eching, S., Davidoff, B. and Frame, K. 2005. Comparison of some reference evapotranspiration equations for California. J. Irrig. Drain. Eng., 131 (1) , 73–84.

Thakur, A.K., Mohanty, R.K., Patil, D.U. and Kumar, A. 2014. Impact of water management on yield and water productivity with system of rice intensification (SRI) and conventional transplanting system in rice. Paddy Water Environ. 12, 413–424.

Tian, D. and Martinez, C. J. 2012. Forecasting reference evapotranspiration using retrospective forecast analogs in the southeastern United States. Journal of Hydrometeorology 13, no. 6 (2012): 1874-1892. https://doi.org/10.1175/JHM-D-12-037.1

Van Ittersum, M.k., Cassman, K. G., Grassini, P., Wolf, J., Tittonel, P. and Hochman, Z. 2013. Yield gap analysis with local to global relevance- a review. Field Crop. Res. 143, 4–17. Doi: 10.1016/j.fcr.2012.09.009.

Wassmann, R., Jagadish, K., Peng, S. B., Sumfleth, K. and Ole Sander, B. 2010. Rice production and global climate change: scope for adaptation and mitigation activities.

Wassmann, R and Dobermann,A. 2007. Climate change adaptation through rice production in regions with high poverty levels. Journal of Semi-Arid Tropical Agricultural Research, 4(1):1–24.

Willians, C.L., Liebman, M., Edwards, J. W., James, D. E., Singer, J. W., Arritt, R., Herzmann, D. 2008. Patterns of regional yield stability in association with regional environmental characteristics. Crop Sci, 48,1545-1559