بررسی تأثیر جداره های خارجی ساختمان های مسکونی بر میزان انرژی نهفته و گاز دی اکسید کربن انتشار یافته(Co2eq)؛ مطالعه موردی سنندج

نوع مقاله : مقاله علمی -پژوهشی کاربردی

نویسندگان

1 استادیار گروه معماری، واحد مریوان، دانشگاه آزاد اسلامی، مریوان، ایران

2 استادیار گروه معماری، واحد مریوان، دانشگاه آزاد اسلامی، مریوان، ایران.

چکیده

هدف از این پژوهش، برآورد انرژی نهفته اولیه و کربن دی‌اکسید معادل (CO2eq) برای جداره‌های متداول خارجی مسکن شهری سنندج واقع در ایران است. انرژی نهفته در سه منطقه شهری سنندج به‌ منظور تعیین اختلاف احتمالی بین مناطق موجود، بررسی‌شده است. در راستای شناسایی انواع جداره های خارجی ساختمان‌های مسکونی، از روش دلفی و نظرسنجی از افراد متخصص استفاده شد. بر اساس نتایج نظرسنجی ها، انواع جداره‌های خارجی در 10 نوع اصلی و 36 زیرمجموعه طبقه‌بندی شدند. محاسبات انرژی نهفته نشان می‌دهد که پایین‌ترین میزان انرژی اولیه متعلق به جداره نوع 5 (بلوک سفالی سوراخ‌دار 15 سانتی‌متری) و بالاترین میزان انرژی اولیه متعلق به جداره نوع 2 (آجر فشاری 20 سانتی‌متری) به ترتیب برابر 441.5 MJ و 1066.5 MJ است. همچنین پایین‌ترین سطح CO2eq متعلق به جداره نوع 10 (بلوک هبلکس 15 سانتی‌متری AAC) و بالا‌ترین سطح CO2eq متعلق به جداره نوع 2 به ترتیب برابر 7.773 kg CO2/kg و 24.761 kg CO2/kg است. منطقه 1 شهری دارای بیشترین و منطقه 3 شهری دارای کمترین مصرف انرژی نهفته برای هر مترمربع جداره های خارجی است. همچنین منطقه 1 شهری دارای بالاترین و منطقه 3 شهری دارای پایین‌ترین مقدار CO2eq برای هر مترمربع جداره های خارجی است.

کلیدواژه‌ها


عنوان مقاله [English]

Investigating the effect of the external walls of residential buildings on the amount of latent energy and emitted carbon dioxide gas (Co2eq); A case study of Sanandaj

نویسندگان [English]

  • Ayoob Moradkhani 1
  • Mohammad Dana Salem 2
1 Assistant professor, Department of Architecture, Mariwan Branch, Islamic Azad University, Mariwan, Iran
2 Assistant professor, Department of Architecture, Mariwan Branch, Islamic Azad University, Mariwan, Iran.
چکیده [English]

The purpose of this research is to estimate the primary latent energy and carbon dioxide equivalent (CO2eq) for the common external windows of Sanandaj urban housing located in Iran. The latent energy in three urban areas of Sanandaj has been investigated in order to determine the possible difference between the existing areas. In order to identify the types of external walls of residential buildings, the Delphi method and a survey of experts were used. Based on the results of surveys, the types of external walls were classified into 10 main types and 36 subcategories. Latent energy calculations show that the lowest amount of primary energy belonging to wall type 5 (15 cm perforated clay block) and the highest amount of primary energy belonging to wall type 2 (20 cm pressed brick) are 441.5 MJ and 1066.5 MJ, respectively. Also, the lowest level of CO2eq belonging to the type 10 wall (15 cm AAC heplex block) and the highest level of CO2eq belonging to the type 2 wall are equal to 7.773 kg CO2/kg and 24.761 kg CO2/kg, respectively. Urban area 1 has the highest and urban area 3 has the lowest latent energy consumption for each square meter of external walls. Also, urban area 1 has the highest and urban area 3 has the lowest amount of CO2eq for each square meter of external walls.

کلیدواژه‌ها [English]

  • Equivalent carbon dioxide
  • latent energy
  • external walls
  • primary latent energy
  • residential buildings
Acquaye, A., Duffy, A., & Basu, B. (2011). Embodied emissions abatement—A policy assessment using stochastic analysis. Energy Policy, 39(1), 429-441.‏
Aktas, C. B., & Bilec, M. M. (2012). Impact of lifetime on US residential building LCA results. The International Journal of Life Cycle Assessment, 17(3), 337-349.‏
Aktas, C. B., & Bilec, M. M. (2012). Impact of lifetime on US residential building LCA results. The International Journal of Life Cycle Assessment17(3), 337-349.
Brás, A., & Gomes, V. (2015). LCA implementation in the selection of thermal enhanced mortars for energetic rehabilitation of school buildings. Energy and Buildings, 92, 1-9.‏
Cantrell, J. M., & Wepfer, W. J. (1984). Shallow ponds for dissipation of building heat: a case study. ASHRAE transactions90(2), 238-246.
Copiello, S. (2016). Economic implications of the energy issue: Evidence for a positive non-linear relation between embodied energy and construction cost. Energy and buildings123, 59-70.
Coyle, E. D., & Simmons, R. A. (2014). Understanding the global energy crisis. Purdue University Press.
Crowther, P. (1999). Design for disassembly to recover embodied energy.‏
Ding, G. K. C. (2004). The development of a multi-criteria approach for the measurement of sustainable performance for built projects and facilities (Doctoral dissertation).‏
Ding, G. K. C. (2004). The development of a multi-criteria approach for the measurement of sustainable performance for built projects and facilities (Doctoral dissertation).‏
Dixit, M. K., Culp, C. H., & Fernández-Solís, J. L. (2013). System boundary for embodied energy in buildings: A conceptual model for definition. Renewable and Sustainable Energy Reviews21, 153-164.
Dixit, M. K., Fernández-Solís, J. L., Lavy, S., & Culp, C. H. (2012). Need for an embodied energy measurement protocol for buildings: A review paper. Renewable and sustainable energy reviews, 16(6), 3730-3743.‏
Dixit, M. K., & Singh, S. (2018). Embodied energy analysis of higher education buildings using an input-output-based hybrid method. Energy and Buildings161, 41-54.
Hamidi Razi, D., & Feshari, M. (2017). Investigation of Per capita CO2 Dynamics in OPEC Countries (β and σ Convergence Approach). Journal of Environmental Science and Technology19(4), 87-99.
Hamilton-MacLaren, F., Loveday, D. L., & Mourshed, M. (2009). The calculation of embodied energy in new build UK housing.‏
Hammond, G. P., Jones, C. I. (2008). Embodied energy and carbon in construction materials. Proceedings of the Institution of Civil Engineers - Energy, Vol. 161(2), pp. 87-98. DOI: 10.1680/ener.2008.161.2.87.
Ibn-Mohammed, T., Greenough, R., Taylor, S., Ozawa-Meida, L., & Acquaye, A. (2013). Operational vs. embodied emissions in buildings—A review of current trends. Energy and Buildings, 66, 232-245.‏
Ibn-Mohammed, T., Greenough, R., Taylor, S., Ozawa-Meida, L., & Acquaye, A. (2012). Optimal Ranking of Retrofit Options for Emissions Reduction in Non-Domestic Buildings-A Review.‏
Kavanaugh, S., Rafferty, K. (1997). Ground source heat pumps. Design of Geothermal Systems for Commercial and Institutional Buildings. American Society of heating, Refrigeration and Air-conditioning Engineers, Inc. Atlanta, GA: USA.
Lützkendorf, T., Foliente, G., Balouktsi, M., & Wiberg, A. H. (2015). Net-zero buildings: incorporating embodied impacts. Building Research & Information, 43(1), 62-81.‏
Miller, A. (2001). Embodied Energy–A life-cycle of transportation energy embodied in construction materials. In COBRA 2001, Proceedings of the RICS Foundation Construction and Building Research Conference.‏
Newton, J., & Westaway, N. (2001). Sustainable Homes: Embodied energy in residential property development: A guide for registered social landlords. Hastoe Housing Association.‏
Praseeda, K. I., Reddy, B. V., & Mani, M. (2016). Embodied and operational energy of urban residential buildings in India. Energy and Buildings, 110, 211-219.
Praseeda, K. I., Venkatarama Reddy, B. V., Mani, M. (2016). Embodied and operational energy of urban residential buildings in India. Energy and Buildings, Vol. 110, pp. 211-219.
Ramesh, T., Prakash, R., Shukla, K. K. (2010). Life Cycle Energy Analysis of Buildings: An Overview. Energy and Buildings, Vol. 42, pp. 1592-1600.
Rawlinson, S., & Weight, D. (2007). Sustainability: embodied carbon. Building Magazine, 12, 88-91.‏
Reddy, B. V., & Jagadish, K. S. (2003). Embodied energy of common and alternative building materials and technologies. Energy and buildings, 35(2), 129-137.‏
Riazi, M., Hoseini, S. M. (2011). A look to the policies of optimizing energy production and consumption in the construction sector of Iran, the first International Conference on Emerging Trends in Maintaining Energy, Tehran, Amirkabir Industrial University.
Shadram, F., Mukkavaara, J. (2018). An integrated BIM-based framework for the optimization of thetrade-off between embodied and operational energy. Energy and Buildings, Vol. 158, pp. 1189-1205.
Slavković, K., Radivojević, A. (2015). Evaluation of energy embodied in the external wall of single-family buildings in the process of energy performance optimization. Energy Efficiency, Vol. 8, pp. 239-253.
Sorrell, S. (2007). The Rebound Effect: an assessment of the evidence for economy-wide energy savings from improved energy efficiency.‏
Statistical Center of Iran, (2016). General population and housing census. Sanandaj: Statistical Center of Iran. https://amar.sci.org.ir/index_e.aspx.
Steele, J. (1997). Sustainable architecture: principles, paradigms, and case studies. New York: McGraw-Hill Inc.
Tiwari, P. (2001). Energy efficiency and building construction in India. Building and Environment, 36(10), 1127-1135.‏
Treloar, G. J., Love, P. E., & Holt, G. D. (2001). Using national input/output data for embodied energy analysis of individual residential buildings. Construction Management and Economics, 19(1), 49-61.‏
Treloar, G., Fay, R., Ilozor, B., & Love, P. (2001). Building materials selection: greenhouse strategies for built facilities. Facilities, 19(3/4), 139-150.‏
 United Nations, (2001). World urbanization project: the 1999 revision. New York: The United Nations Population Division.
Vilches, A., Garcia-Martinez, A., Sanchez-Montañes, B. (2017). Life cycle assessment (LCA) of building refurbishment: A literature review. Energy and Buildings, Vol. 135(15), pp. 286-301.
Windle, P. E. (2004). Delphi technique: assessing component needs. Journal of PeriAnesthesia Nursing, Vol. 19(1), pp. 46-47.‏